A TEST FOR CONDITIONAL HETEROSKEDASTICITY IN TIME SERIES MODELS
نویسندگان
چکیده
منابع مشابه
Combined Estimator of Time Series Conditional Heteroskedasticity∗
We propose a new combined estimator, called semiparametric estimator, which incorporates the parametric and nonparametric estimators of the conditional variance in a multiplicative way. We derive bias, variance, and asymptotic normality of the combined estimator. Semiparametric estimators are found to be superior to parametric and nonparametric estimators, both in simulation and empirical analy...
متن کاملa time-series analysis of the demand for life insurance in iran
با توجه به تجزیه و تحلیل داده ها ما دریافتیم که سطح درامد و تعداد نمایندگیها باتقاضای بیمه عمر رابطه مستقیم دارند و نرخ بهره و بار تکفل با تقاضای بیمه عمر رابطه عکس دارند
Time - series Econometrics : Cointegration and Autoregressive Conditional Heteroskedasticity
متن کامل
Comparison of Neural Network Models, Vector Auto Regression (VAR), Bayesian Vector-Autoregressive (BVAR), Generalized Auto Regressive Conditional Heteroskedasticity (GARCH) Process and Time Series in Forecasting Inflation in Iran
This paper has two aims. The first is forecasting inflation in Iran using Macroeconomic variables data in Iran (Inflation rate, liquidity, GDP, prices of imported goods and exchange rates) , and the second is comparing the performance of forecasting vector auto regression (VAR), Bayesian Vector-Autoregressive (BVAR), GARCH, time series and neural network models by which Iran's inflation is for...
متن کاملA Nonparametric Goodness-of-fit-based Test for Conditional Heteroskedasticity∗
In this paper we propose a nonparametric test for conditional heteroskedasticity based on a new measure of nonparametric goodness-of-fit (R2). In analogy with the ANOVA tools for classical linear regression models, the nonparametric R2 is obtained for the local polynomial regression of the residuals from a parametric regression on some covariates. It is close to 0 under the null hypothesis of c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Time Series Analysis
سال: 1992
ISSN: 0143-9782,1467-9892
DOI: 10.1111/j.1467-9892.1992.tb00123.x